
Damping Heat Coefficient – Theoretical and

Experimental Research on a Vibrating Beam

Cite as:Journal of Sound and Vibration, Volume 400, 21

July 2017, Pages 1321, DOI:10.1016/j.jsv.2017.04.023

Marko Mihaleca, Jaka Javha, Filippo Cianettib, Michele Morettib, Gianluca
Rossib, Janko Slaviča,∗, Miha Boltežara
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Abstract

Vibrating systems dissipate their vibrational energy through different mech-

anisms, commonly referred to as damping. Damping converts the vibrational

energy into other forms, such as heat and sound radiation. Heating of the

material is often assumed to be one of the biggest drains of energy; however,

the measurable temperature increase is at the level of milli Kelvin and hard to

measure. This research introduces a damping heat coefficient, the coefficient

of total dissipated energy that is converted into heat. Using this coefficient,

the expected temperature change of a beam is theoretically related to its

damping ratio. In addition, the damping heat coefficient is determined ex-

perimentally by measuring the temperature increase of a vibrating beam.

Based on modal damping, it is shown that different amounts of energy are
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dissipated at different parts of the structure. The numerical heat model was

experimentally confirmed.

1. Introduction

Damping is a phenomenon that dissipates the energy of every vibrat-

ing system. Depending on its spatial origin, damping can be classified as

material damping, boundary damping and damping due to fluid-structure

interactions [1]. This paper focuses on material damping, which mainly en-

compasses thermoelastic damping and internal friction [2, 3].

From the macroscopic standpoint, damping is often categorized as either

hysteretic or viscous damping [4, 5]. Viscous damping is especially character-

istic of cases where the observed structure is made of polymeric material [6].

Regardless of the mechanism, damping dissipates the vibrational energy

into other forms, such as the energy of sound waves and heat. Since different

damping mechanisms ultimately result in the generation of heat, this research

focuses on measuring the temperature increase as a result of damping.

While damping is of interest when studying any vibrating system, the

relation between damping and its thermal effects has not been widely re-

searched [7], especially due to the small temperature changes that are dif-

ficult to measure. When investigating thermoelastic damping, Norris and

Photiadis [8] related the thermal loss and the principal curvatures in thin

plates.

The manuscript is organized as follows. Section 2 introduces the the-

oretical backgrounds that relate the damping of a vibrating beam to the

temperature increase. In Section 3, the experiment that was carried out to
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validate the theoretical backgrounds is presented. Section 4 presents the re-

sults by firstly examining the predicted and measured spatial temperature

increase and, secondly, determining the fraction of dissipated energy that

was converted to heat (i.e., the damping heat coefficient). The last section

draws the conclusions.

2. Theoretical background

2.1. Damping according to the Kelvin-Voigt material model

One way to model the damping in materials is to use the Kelvin-Voigt

viscous material model [9], where a viscous damper and an elastic spring are

connected in parallel, see Fig. 1:

σ(t) = E ε(t) + η
∂ε(t)

∂t
(1)

where σ(t) is the stress in the material, ε(t) is the strain in the material, E

is the modulus of elasticity and η is the viscosity.

By using the Euler-Bernoulli beam theory, the strain in the beam is modeled

as [9, 10]:

ε(x, z, t) = −z∂
2w(x, t)

∂x2
, (2)

where z is the coordinate from the beam center in the direction of the beam’s

thickness and w(x, t) is the beam deflection. The shear was neglected; there-

fore, the stress is assumed to be uniaxial according to Eq. (2) and via Eq. (1)

produces:

σ(x, z, t) = E
(
− z∂

2w(x, t)

∂x2

)
+ η
(
− z∂

3w(x, t)

∂x2∂t

)
(3)

where only the second, viscous term is responsible for the damping.

If the beam is excited at or close to a natural frequency ω, the corresponding
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deflection shape φ(x) defines the motion of the beam [11]:

w(x, t) = Re
{
φ(x)

}
cos(ω t) + Im

{
φ(x)

}
sin(ω t) (4)

By deriving the beam deflection (4) over time and implementing it in the

viscous part of Eq. (3) the stress caused by the material’s viscosity is:

σd(x, z, t) = η z ω

(
∂2Re

{
φ(x)

}
∂x2

sin(ω t)−
∂2Im

{
φ(x)

}
∂x2

cos(ω t)

)
(5)

The differential energy dWd lost to damping equals the viscous force Fd over

the displacement dx:

dWd = Fd dx, (6)

or in terms of material stress and strain for a finite volume ∆V :

dWd = (σd ∆A) (∆l dε) = σd dε∆V (7)

By deriving the damped energy Wd (7) with regards to time t and omitting

the finite volume ∆V , the volumetric damping power caused by the beam’s

viscosity is introduces as:

Pd∆V (x, z, t) = σd(x, z, t)
∂ε(x, z, t)

∂t
(8)

Using Eqs. (2), (4) and (5) with the volumetric damping power (8) the result

is:

Pd∆V (x, z, t) = η ω2z2

[(
∂2Re

{
φ(x)

}
∂x2

)2

sin2(ω t) +

(
∂2Im

{
φ(x)

}
∂x2

)2

cos2(ω t)

− 2

(
∂2Re

{
φ(x)

}
∂x2

)(
∂2Re

{
φ(x)

}
∂x2

)
sin(ω t) cos(ω t)

]
(9)
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By neglecting the power oscillations with 2ω, resulting from the squares and

multiplications of the trigonometric functions and observing the damping

power quasi-statically over time

sin2(ω t) =
1

2

(
cos(0)− cos(2ω t)

)
−→
qs

1

2
(10)

cos2(ω t) =
1

2

(
cos(0) + cos(2ω t)

)
−→
qs

1

2
(11)

sin(ω t) cos(ω t) =
1

2

(
sin(2ω t) + sin(0)

)
−→
qs

0, (12)

the volumetric damping power can be simplified to:

Pd∆V,qs(x, z) =
η ω2z2

2

[(
∂2Re

{
φ(x)

}
∂x2

)2

+

(
∂2Im

{
φ(x)

}
∂x2

)2]
(13)

The derived equation indicates that the damping is proportional to the square

of the frequency and to the square of the distance from the beam center,

meaning that the damping losses are expected mostly on the beam’s surface.

2.2. Relationship between damping ratio and temperature increase

Eq. (13) uses the Kelvin-Voigt material model to show how the power of

the dissipated energy is spatially distributed over a beam. To further val-

idate this result, the spatial distribution is sought once again, but instead

of using the Kelvin-Voigt model, a more general energy-based approach is

utilized and related to the damping ratio.

Once again, the Euler-Bernoulli beam theory is considered. For such a vi-

brating beam, its strain energy is given as [12]:

Wl =
1

2

∫ l

0

E I

(
∂2φ(x)

∂x2

)2

dx (14)
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E I denotes the flexural rigidity and l is the length of the beam. The strain

energy modal shape is considered [13], which can be written for an arbitrary

interval [a,b] on the beam as:

Wab =
1

2

∫ b

a

E I

(
∂2φ(x)

∂x2

)2

dx (15)

When the interval is shortened towards zero, Eq. (15) yields an expression

for the strain energy density W (x):

W (x) =
1

2
E I

(
∂2φ(x)

∂x2

)2

(16)

While the beam is vibrating, the total energy equals the sum of the consis-

tently changing strain and kinetic energies. If the beam is observed under

steady-state conditions, ∂φ(x)/∂t = 0, then the strain energy equals the total

energy of the vibrating beam and W (x) becomes the total energy density.

In cases when the damping ratio δ is low (δ � 1), the damping can be

characterized by Eq. (17), either as a ratio of the lost energy during a single

cycle and the total energy of vibration, denoted by Ψ, or as a logarithmic

ratio of the amplitudes of successive cycles [2].

∆W

W
= Ψ = 2δ = 2 ln

zn
zn+1

(17)

Here, ∆W represents the energy scattered in a single cycle, and zn is the

amplitude of vibration in the n-th cycle.

This research examines a homogeneous beam with a constant cross-section.

The shape of φ(x) is not dependent on the amplitude of vibration zn. This

means that the ratio zn/zn+1 is constant for every x and thus the Ψ and δ

are also constant for every x. Since the energy density W (x) depends on x
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and Ψ does not, the energy scattered in each cycle must also depend on x:

∆W = ∆W (x). Eqs. (16) and (17) yield:

∆W (x) = δEI

(
∂2φ(x)

∂x2

)2

(18)

Regardless of the microscopic nature of the damping mechanisms, some of

the energy dissipated by damping gets converted to heat. Next, the damping

heat coefficient r is defined, which is the ratio of the energy that is being

converted to heat and the total energy dissipated as a result of damping:

r =
∆W (x)heat

∆W (x)
(19)

The part of the energy that is being dissipated as heat results in an increase

of the temperature:

∆W (x)heat = mu c∆T (x) (20)

where c is the specific heat of the material, mu denotes the mass per unit

length of the beam and ∆T is the increase in the temperature after a single

cycle.

Now, using Eqs. (18), (19) and (20) the relation between the damping

ratio, the damping heat coefficient r and the temperature increase can be

formed:

∆T (x) =
r δ E I

cmu

(
∂2φ(x)

∂x2

)2

(21)

Eq. (21) can be used to predict the temperature increase after a single cycle,

if the damping ratio is known. Alternatively, it can be used to assess the

damping ratio if the temperature increase has been measured. In both cases,

the proportion of scattered energy converted to heat has to be known.
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To calculate the temperature increase using Eq. (21), a second derivative

of the operational deflection shape φ has to be calculated. In cases of propor-

tionally damped materials, all the points on the beam move synchronously

with the phase shift of either π or 0 [14]. With a damped polymer mate-

rial, a phase shift and complex operational deflection shapes may arise. The

strain energy of the beam from Eq. (16) will equal the total energy if the

kinetic energy is 0 and the deflection is maximal. To identify those moments

in time, the absolute value of complex shapes is used. Because of linearity,

the square of the second derivative is expressed as the sum of squares of the

second derivatives of the real and imaginary parts:(
∂2φ(x)

∂x2

)2

=

(
∂2Re(φ(x))

∂x2

)2

+

(
∂2Im(φ(x))

∂x2

)2

(22)

Combining Eqs. (21) and (22) yields the final equation for the predicted

temperature increase:

∆T (x) =
r δ E I

cmu

[(
∂2Re(φ)

∂x2

)2

+

(
∂2Im(φ)

∂x2

)2
]

(23)

Notice that Eq. (23) proposes the same x dependency as Eq. (13), but in-

stead of relating viscosity and power it directly relates the damping ratio and

temperature increase over a single cycle.

2.3. Other drains of energy

This work focuses primarily on the part of the dissipated energy that is

converted to heat; however, another very common drain of energy, acoustic

radiation, is briefly presented here.
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The sound power radiated from a vibrating surface can be determined as [15]:

Ps = σr ρa ca S v̄
2, (24)

where σr is the radiation efficiency, ρa ca is the specific acoustic impedance of

the fluid, S is the vibrating surface area and v̄2 is the mean square surface-

averaged velocity.

A point on the beam’s surface is vibrating according to Eq. (4). By deriving

the beam deflection over time, the surface velocity can be obtained as:

ẇ(x, t) = v(x, t) = ω
(
− Re

{
φ(x)

}
sin(ω t) + Im

{
φ(x)

}
cos(ω t)

)
, (25)

the time average of the squared surface velocity is:

v̄2(x) =
ω2

2

(
Re
{
φ(x)

}2
+ Im

{
φ(x)

}2
)
, (26)

and the acoustically radiated power as

Ps = σr ρa ca S
ω2

2

(
Re
{
φ(x)

}2
+ Im

{
φ(x)

}2
)

(27)

3. Experiment

A solid beam measuring 5×20×300 mm made of polymethyl methacrylate

(PMMA) was used. The beam was coated with highly emissive black paint

that aided the measurements with a thermal camera. The measurement setup

is shown in Fig. 2. The beam was excited using a LDS V406 shaker. The

orientation of the beam was such that it was excited parallel to its shortest

9



dimension. The shaker and the beam were attached at a single point, 112

mm from the edge of the beam. A stinger connected the shaker and the

beam, that reduced the thermal conduction and insulated the beam. The

tested beam was surrounded by a cardboard shield which protected against

radiation. Before each test, the specimen was thermically stabilized for 30

minutes.

The thermocamera used to measure the thermal field was the Deltatherm

1560 by Stressphotonics, equipped with a 320×256 focal plane array (FPA)

sensible in the near-IR window, typical of InSb sensors. The FPA is refriger-

ated to 78K to minimize the noise-equivalent temperature value up to 18mK.

The measurement system acquires up to 1000 FPS (frames per second), de-

pending on the shutter settings. In the set up used for the experiments a 3.2

ms shutter and 100 FPS were set.

The beam was excited by a harmonic signal of a single frequency and

constant amplitude. The test was performed close to two natural frequencies:

the first test was performed at a frequency of 2225 Hz and the second at

a frequency of 5530 Hz. To achieve steady-state temperature conditions,

the samples were excited for 180 seconds. During the test, the thermal

camera was continuously recording the temperature along the entire length

of the tested beam. However, for later analysis only the last 2 seconds of the

temperature maps [16] were integrated for 2 seconds to minimize the noise.

Later, white stripes were painted on the beam to provide a pattern for

an optical measurement of the operational deflection shape (ODS). The vi-

brating beam was filmed with a Photron Fastcam SA-Z high-speed camera

positioned at an angle to the beam’s front surface to measure the bending
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of the beam, see Fig. 2. Filming was performed at 50000 FPS, 12 bits of

intensity resolution, a frame size of 1024× 72 and 600,000 frames were cap-

tured. Using a gradient-based Optical Flow displacement amplitudes in the

range of ten thousandths of a pixel can be measured [17]. The displacement

was measured in a grid of 8× 986 points. The obtained displacements were

transformed to the frequency domain and only the excited harmonic was ob-

served. The 8 lines of displacements were averaged to produce the ODS seen

in Fig. 3. Each ODS (at 2225 and at 5530 Hz) was obtained from a separate

measurement.

4. Results

4.1. Spatial comparison

According to Eq. (21), the generation of the heat and thus the tempera-

ture increase should be the highest at the points where the second derivative

of deflection shape φ(x) is the highest. While the measured operational de-

flection shapes are shown in Fig. 3, the squared second spatial derivative of

the measured deflection shapes (22) and the measured temperature increases

after 180 seconds of excitation are shown in Fig. 4 and 5.

At the location of the excitation shaker, the theoretical equations for a

Euler-Bernoulli beam (see Section 2) and discrepancies between the predicted

and the measured temperatures are expected. Due to this reason, in Fig. 4

and 5 shows the location of the excitation shaker. Discrepancies can result

from the heat being conducted through the stinger, either to or from the

tested beam. Further, at the point of contact, heat might be generated due

to friction or for other reasons that are not related to the damping of the

observed structure.
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4.2. Heating as a result of damping

After the correlation between the square of the second derivative and the

temperature increase has been confirmed, theoretical values for the tempera-

ture increase can be calculated according to Eq. (21). Note that this equation

yields the temperature increase in a single cycle. To obtain the temperature

increase after an arbitrary time t, Eq. (21) has to be modified to:

∆T (x) = t f
r δ E I

cmu

(
∂2φ

∂x2

)2

(28)

where f is the vibration frequency in Hz.

As was discussed in Section 4, the sample was excited for 180 seconds.

As the testing period is relatively long, heat transfer has to be taken into

account when calculating the theoretical temperature increase. The heat

transfer was modeled using the finite differences method [18]. Since the

experimental results were averaged to yield a single value for each location x,

the numerical simulation was also prepared for the longitudinal dimension of

the beam, only. The beam was discretized into 986 elements of length ∆x.

The balance of the thermal energy was written for each element:

Egen − Econd − Econv − Erad =
∆T

cmu ∆x
(29)

where Egen is the thermal energy generated by damping, and Econd, Econv,

Erad are the energies drained from the element by conduction, convection

and radiation, respectively. The thermal energy generated by damping on a

discrete element was calculated as

Egen = ∆t f r δ E I

(
∂2φ

∂x2

)2

∆x (30)
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The values of the parameters used for this numerical model can be found in

Table 1.

With all the parameters known, the only unknown is the damping heat

coefficient r introduced in Eq. (19). By comparing the theoretical results

with the measured ones, the coefficient r can be estimated. In Fig. 6 the

comparison between the numerical model using r = 0.28 and the measured

temperature increase at the excitation frequency of 2225 Hz can be seen. For

the excitation frequency at 5530 Hz r = 0.32 was used, see Fig. 7.

The results discussed in this research were obtained with a polymethyl

methacrylate beam; it is worth noting that experiments with aluminum and

steel beams were also performed, but due to the faster conduction in material,

the temperature difference was at the limit of sensitivity of the measurement

equipment.

When assessing other drains of energy, acoustic radiation has been consid-

ered (27). The major factor in accurately calculating the power that has been

dissipated by acoustic radiation is the radiation efficiency σr. This factor is

influenced by the dimension and shape of the object as well as the vibration

frequency [15, 19], and thus reliably determining the σr is a challenge of its

own and beyond the scope of this study. However, if the radiation efficiency

σr is assumed to be 0.5 for both cases, the power dissipated by acoustic radi-

ation is approximately 120 % of the thermally dissipated power in the 2225

Hz case and approximately 130 % of the thermally dissipated power in the

5530 Hz case.
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5. Conclusion

This research investigated the relation between the damping of a vibrat-

ing system and the dissipation of energy in the form of heat. The theoret-

ical background was derived and showed that the energy is not dissipated

uniformly throughout the whole structure. Instead, heat and thus the tem-

perature change correlates with the square of the second derivative of the

operational deflection shape with respect to location. This hypothesis was

tested experimentally, where it was shown that the temperature increase

follows the predicted distribution.

Further, the research focuses on determining the proportion of dissipated

energy, that is converted to heat. For this, the damping heat coefficient

is introduced, which is the ratio between the dissipated energy that was

converted to heat and the total energy that was dissipated as a result of

the damping. For a polymethyl methacrylate beam it was experimentally

shown that the damping heat coefficient is approximately 0.3. This means

that approximately 30 % of the energy that is dissipated by the damping is

converted into heat.
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Table 1: Parameters used in the theoretical estimation, partially from [20]

Parameter Symbol Value Unit
Thermal conductivity λ 0.192 W m−1 K−1

Heat capacity c 1466 J K−1

Emissivity ε 0.98 1
Young’s modulus E 1944 MPa

Density ρ 1170 kg m−3

Discrete time interval ∆t 0.01 s
Discrete position interval ∆x 0.3 mm
Damping ratio at 2225 Hz δ2225 0.025 1
Damping ratio at 5530 Hz δ5530 0.020 1

Radiation efficiency σr 0.5 1
Specific acoustic impedance of air ρa ca 413.3 Pa s m−3
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Figure 6: Theoretical and experimental temperature increases at an excitation of frequency
2225 Hz.
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Figure 7: Theoretical and experimental temperature increases at an excitation of frequency
5530 Hz.
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